EPR Study of VO²⁺ Doped Diammonium Tricadmium Tetrakis (Sulfate) Pentahydrate [(NH₄)₂Cd₃(SO₄)₄·5H₂O] Single Crystals

İbrahim Kartal, Bünyamin Karabulut, and Esat Bozkurt

Ondokuz Mayıs University, Science and Art Faculty, Physics Department, 55139, Samsun, Turkey

Reprint requests to İ. K.; E-mail: ikartal@omu.edu.tr

Z. Naturforsch. **65a**, 347 – 352 (2010); received September 16, 2008 / revised March 19, 2009

Electron paramagnetic resonance (EPR) studies are carried out on vanadyl (VO²⁺) ions in diammonium tricadmium tetrakis (sulfate) pentahydrate single crystals at room temperature. The EPR spectra of a single crystal exhibit resonance signals characteristic to VO²⁺ ions. The analysis of EPR spectra indicates that the VO²⁺ ions in single crystals show two magnetically inequivalent VO²⁺ sites in distinct orientations occupying substitutional positions in the lattice and showing very high angular dependence. They form in octahedral coordination with tetragonal compression with $C_{4\nu}$ symmetry. The spin Hamiltonian parameters are determined, and these parameters have been used to estimate the bonding coefficients of the VO²⁺ ion in a diammonium tricadmium tetrakis (sulfate) pentahydrate lattice. The parallel and perpendicular components of axially symmetric $\bf g$ and hyperfine ($\bf A$) tensors are evaluated and the results are discussed and compared with previous reports.

Key words: EPR; ESR; Vanadyl Ion; Single Crystal.